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Abstract

Iixpanding graphs and superconcentrators are relevani to theoreti-
cal computer science in several ways. Here we use finite geometries
to construct explicitly highly expanding graphs with essentially the

amallest -possible number of edges.

Our graphs enable us to improve significantly previous results
on a parallel sorting problem, by describing an explicit algorithm
to sort n elements in k time units using O(n°*) processors, where,

e.g., ag == 7/4.

Using our graphs we can also construct efficient n-superconcen-
trators of limited depth. For example, we construct an n supercon-
centrator of depth 3 with O(n*/3) edges; better than the previous

known results,

1. Introduction

A graph G is called {n, a, B)-expanding, where 0 < a< < n,
il it is a bipartite graph on the seis of vertices I (inputs) and O
(outputs), where |I} = |0} = n, and every set of at least a inputs

is joined by edges to at least A different outputs.

Expanding graphs with a2 small number of edges, which are
the subject of an extensive literature, are relevant to theoretical
computer science in several ways. Here we mercly point out two
examples. A family of linear expanders of density k and expansion
disasct {Gn}92, of graphs, where G, has <(k+o(1))n edges and
is (n, @, a1 + d(1 — &/n)))-expanding for all a<nf2, where d > 0
and k are fixed. Such a family is the basic building block used
in the constructions of graphs with special connectivity properties
and small number of edges {see, e.g., Chung [12]). An example of

a graph of this type is an n-superconcentrator, which is a directed

*Rescarch supported in party by the Weizmann Fellowship for Scientific Re-
scarch

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the

®

1985 ACM 0-89791-151-2/85/005/0098 $00.75

98

acyclic graph with n inputs and n outputs such that for every
1< r<n and cvery two sets A of r inputs and I} of r outputs there
are v vertex disjoing paths from the vertices of A to the vertices
of B. Superconcentrators have been used in the construction of
graphs that are hard to pebble (see Lengauer and Tarjan (22],
Pippenger [27] and Paul, Tarjan and Celoni [29]), in the study of
lower bounds (sce Valiani [34]), and in the establishment of time
space tradeoffs for computing various functions (Abelson [1], Ja'Ja’

{20] and Tompa [32}).

A family of linear cxpanders is also essential in the recent paral-

lel sorting network of Ajtai, Komlds and Szemerédi [2].

It is not too difficult to prove the existence of a family of
linear expanders using probabilistic arguments (sce, ¢.g., Chung
{12], Pinkser [25] and Pippenger [26}). llowever, for applications
an cxplicit construction is desirable. Such a construction is far
more difficult and was first given in Margulis [23] and modified in
Gabber and Galil [14]. (See also Alon and Milman (4], [5] for a

more gencral construction.)

The expanding graphs used in [14] to construct superconcen-
trators and those used in the sorting network of [2] are (n, a, B)-
expanding flor some fixed (independent of n) ratio of 3/a, i.e., they
are rather weakly expanding. For some applications, however, a
higher amount of expansion is necessry and {n, a(n), 8(n))-expanding
graphs are nceded, where B(n)/a(n) — oo as n ++ co. A. pos
sible (and essentially the only known) riethod to obtain {explicitly)
highly expanding graphs with a small number of edges is an “iteration”
of the known expander of [14] (see Pippenger [28]). Unfortunately,
this method is a poor substitute for the probabilistic construction
since it supplies graphs with too many edges. This makes some of

the applications impossible.
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Here we use finite geometries to explicitly construct highly ex-
panding graphs with essentially the smallest possible number of
edges. Specifically, we show that the points versus hyperplanes in-
cidence graph of a finite geometry of dimension d is an (n,z,n —
n'+1/4/z).cxpanding graph, for all 0 < z < n. As pointed out
by Pippenger [28], the results of Guy and Znam [15] imply that
any such graph must have at least (n2—1/9) edges. Our graphs
have (1 + 0“))""” ‘ edges; only a constant times the theoretical
lower bound. The previous methods were not sufficient to construct

graphs with this amount of expansion having o(n?) edges.

By a theorem of Singer [16], the edges of our graphs can be
defined by a set of =~ n!~!/4 translations modulo n, in contrast
to the result of Klawe [21] that asserts that no family of linear
expanders can have this form. this reveals a difference between

weakly expanding and highly expanding graphs.

Our new expanding graphs enable us to obtain an explicit algo-
rithm for sorling n elements in two time units using O(n?/4) paral-
le] processors. this improves results of Bollobas and Rosenfeld [10],
Higgvist and Hell [18] and Pippenger 28] who gave explicit algo-
rithms to this problem using 2/5n% + O(n%/?), 13/30(n? — n) and
O(n!-943-(log n)0-943-) processors, respectively. It also enables us
to improve the best known algorithms for sorting n elements in &
time units, for all (fixed) k>4. Very recently Pippenger has found
a slightly better way of using our expanding graphs to get an ex-
plicit algorithm for sorting n elements in two time units using only

O(n®/1%) parallel processors.

Using our graphs we also construct explicitly n-superconcen-
trators of depth 3 with O(n*/3) edges - better than those having
0(n®/?) cdges obtained from the results of Slepian and Duguid
(cf [7, pp. 86-88]) and Meshulam [24]. This also enables one to
construct better explicit superconcentrators of depth 2r + 1 for all

fixed r>1.

Our paper is organized as follows: in Section 2 we construct
our geometric expanders. In Section 3 we describe how they can
be applied to the problem of sorting in rounds and in Section 4 we

discuss bricfly superconcentrators of limited depth.

Our expanders also enable us to construct several graphs relevant
to Ramsey Theory and obtain a strengthened version of the well
known deBruijn-Erdos Theorem [8). This will appear in another

paper [3].
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2. The geometric expanders

Let d,g>2 be integers. Let 1 and O be, respectively, the sets
of points and hyperplanes of a finite geometry of dimension d and
order q. As is well known, such a geometry always exists if ¢ is
a prime power [16]. Let G = G(q,d) denote the bipartite graph
with classes of vertices 7 and O in which p € [ is joined to & €
O iff p is incident with k. When ¢ is a prime power G has the
following easy explicit construction. Let V be the set of all non-
zero vectors of length d+ 1 over the finite ficld GF(g). Two vectors
T = (24, ..., Td41) 2a0d § = (y1,..., ¥e+1) are equivalent iff z; = cy;
for some ¢ € GF(q) and 1 < i < d+ 1. Let V denote the set of
all equivalence classes of V under this relation. Put [ = 0 = V.
Two vertices (21,22, .., z441)] € T and [(y1,v2, .y ¥d+1)] € O are
joined iff 2:’:} z;9; = 0. The next theorem shows that G{q,d) is a

highly expanding graph.
Theorem 2.1

Put n= (¢**' - 1)/(g—1), k = (g~ )f{g~ 1), A = (¢ -
1)/(g-1).

1. G = Glq,d) is k-regular and [I] == |O| == n; thus C has
(1 + o(1))n?~1/4 cdges. (As q =+ oo for fixed d.) Every two distinct

vertices of O have precisely X\ common neighbors in /.
2. 1f X C I, |X| = z then |N(X)|>n = n!+1/4/z. Thus G is
(n,2,n —n1T1/9/z).expanding for all 0 < z < n.

3.1 Z C O then
|6 € LING) ()21 < 3121nt /) < 4nt+19)1 2.

Proof

Part 1 of the above theorem is well known (and casy - see, e.g.,
[16]). Parts 2 and 3 (and in fact even slightly stronger assertions)
can be proved using a relation, similar Lo the one proved in [31] or
in [4], between the cigenvalues of the adjacency matrix of a graph
and its expansion properties. Ilere we present an easier proof that
uses linear algebra and a certain “second moment” method. Put
G =Glg,d)=(1,0;E). Fori€ I,0 €Opute;, =g-1ifin € E
and ¢;, = —1 il fo @E. Suppose X C I,Z C O then

Tiex{oezcio) <Eier(Eoe 2€i0)* = ToezLiered, +

+2Z (o 01y ezZigtCio - Giv = |Z|(k - (g~ 1)* + n-k) +

+2|(12) - D(Mg=1)* = 2(k=X)g=1) +n =2k +)) =



= |Z|(g**" —q + 1) - |2[()Z z|-n'tie,

-1)g-1)<g

To prove 2, apply the iast incquality to X and Z = O — N(X).
{Note that for i € X L,ezcio = —|Z]j. To prove 3, apply the last
inequality to X = {i € I : [IN({)N Z] < }|Z|/n'/?} and Z. (Note
that here for i € X Tocz¢ie< —|Z]1/2)- B

Remarks

1. The known results about the distribution of primes (see, e.g.,
[8, p. xx}} clearly imply that for every fixed d>2 and every integer
n there exists a prime p such that ng(pdt! — 1)/(p - 1)<n +
O(n'~Y/G49), Any z inputs in any induced subgraph of G(p,d)

1+1/4
T

n

with n inputs and n outputs have >n —(1+0(1)) neighbors.
Thus we have for every d>2, an explicit construction of a family
of graphs {II(n,d)}%_, where H(n,d) has (1 + o(1))n?~1/4 edges

and is (n,z,n — (1 + o(1))n'*+"/4/z)-expanding for all 0 < T < n.

2. by using the results of [15} on the problem of Zarenkiewicz one
can casily show that any graph that has the expansion properties
of G(q, d) must have at least (1+ o(1))- ¢n2-n®~1/? edges. Note that
the number of edges of G(q,d) (or of H(n,d)) is (1 +o(1)) - n?~1/4
and thus these graphs have (up to a eonstant of 1/£n2) the smallest

. possible number of edges.

3. Let PG(d, ) be the finite geometry of dimension d over the field
GF(q) and let G(g, d) be the corresponding cxpander. Let n, k be as
in Theorem 2.1. By Singer's Theorem ([16]) there exist 0 < ay <
a3 < ... < ar < nsuch that G(g,d) is isomorphic to the bipartite
graph with classes of vertices A = B = {0, 1,2, ...,n— 1} in which
a € Ais joined to b € B iff b= (a+a,)(mod =) for some 1 <1 < k.
This contrasts with the result of [21] that implies that no family
of linear expanders can have this form and thus shows a difference

between highly expanding and weakly expanding graphs.
3. Sorting in rounds.

Suppose we are given n elements with a linear order unknown
to us. In the first round we ask m, simultaneous questions, each a
binary comparison. Having the answers we deduce all implications
and ask, in the next round, another m2 questions, deduce their
implications, and so on. A choice of our questions that guarantees
that after r rounds we will know the complete order of the ele-
ments is an algorithm for sorting in » rounds. The need for such
algorithms with fixed r arises in structural modeling (see Haggvist
and Hell [19]). Since all comparisons within a round are evaluated
simultaneously, such algoorithms have obvicus connection to paral-

lel sorting, as defined by Valiant [33], and seem to be practical
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in situations like testing consumer preferences (sce Scheele [30]),
where the communication between our sorting computer and the
consumers is being performed by correspondence. Many results

about sorting in rounds can be found in the survey article [9).

Let f,(n) denote the minimum possible number of comparisons
sufficient to sort n elements in 7 rounds. Clearly, fi(n) = (}).
In Haggvist and Hell {17,18] and Bollobis and Thomason [i1],
probabilistic arguments are used to obtain estimates of f,(n) for
r>2. In particular it is known that f(n) = O(n*?logn) and
[2(n) = Q(n®?) (see [11]). For practical applications, however,
a probabilistic argument is not enough and an explicit sorting
algorithm is desirable. Haggvist and llell observed this fact and
in [19] they gave explicit algorithms for sorting in k rounds with
O(n**) comparisons, where a; — 1 as k — oo and, eg., 83 =

8/5, 84 = 20/13, and sg 28/19. It seems more difficult to

find an efficient sorting algorithm in two rounds. In [18] such an
algorithm with 13/30(n? — n) comparisons is given. A somewhat
better algorithm is given in Bollobds and Rosenfeld [10] - with
2/5n% + O(n%/2) comparisons. The only construction with o(n3)

comparisons is due to Pippenger [28] - O(n!-%43-(log n)0-%43--),

In some situations it may be undesirable to allow deducing all
implications, since conclusions derived from relations themseclves
derived by transitivity may be unreliable. Thus onie may be willing
to allow only direct implications (i.e., if we find in the first round
thatz < y, ¥y < 2 and 2 < ¢t we conclude that z < zand y < ¢
but not necessarily that z < ¢). In [11] a lower bound of f)(n5/3)
is proved for such an algorithm in 2 rounds. Using our geometric

expanders we obtain:
Theorem 3.1

By an explicit construction that uses only direct implications
J2(n) = O(n"/4).

Note that by the lower bound mentioned above our construction is

not fare from being best possible.
Proof.

Let A be the set of n objects we have to sort. Clearly we may
assume that #n is of the form (¢® — 1)/{g ~ 1) for some prime power
g (otherwise, add o(r) dummy objects to oblain an n of this form).
Let G = Glgq,4) be a geometric expander corresponding to a finite
geomelry of dimension 4 and order g. Let | = {vy,vs,...,v,}

and O = {uj,ug,..,un} be the scts of inputs and outputs of G,



respectively, In the first round we compare the i-th clement of A
to the j-th element if v;u; is an edge of G. There are O(n/4) such

comparisons.

We proceed to show that even by deducing only direct implica-
tions, we will have to compare in the second round only O(n?/4)
pairs. For X C A put N(X) = {y € A: y is compared in the first
round to some z € X}. The following two facls follow directly

from Theorem 2.1,
Fact 1.

1 Z C A, 12 = (4+0(1))n%* and
X={zeA: IN(:c)nZI <n'?)

then |X|<(1 + o(1))n!/2.
Fact2.
KY C A, |Y! > n!/2 then |N(Y)[|>n — n¥/4.

Define a partition of A into £ = [n!/4/4] blocks of Aj,..., Ag,
each of size (4+0(1))n%/4, such that each A; consists of consecutive
objects (in the linear order we have to find) and the maximal
element of A; is smaller than the minimal element of A;41. Call an
element a € Agyy bad if |N(a){) A <nl/?, otherwise call it good.
By Fact 1 the number of bad elements in A;y, is <(1 + of1))n'/2.

let a € A;4; be good and suppose b € U;:l A 1t

NE( N A # ¢ (3.1}

then, by direct implication from the first round, b < a. However,
IN(@)NA:] > n'/2, and thus, by Facl 2 the number of b-s that
violate (3.1) is <n®*. It follows that the total number of com-
parisons of an clement a € A4 to clements in U;;'] Aj left for
the second round is bounded by n (of course} if a is bad and by

[Ai]+ | As 1] + 734 = (9+0(1))n*/* il a is good. The total number
of these comparisons is thus bounded by

£-(1 4+ 0(1))n? . n 4 n(9 + o(1))n¥* = O(n?/4).
Since the first round also requires O{n7/1) comparisons, the total
number of comparisons is O(n?/4). §

Very recently Pippenger has shown that by using indirect im-
plications of arbitrary length, the number of comparisons can be
reduced to O(n?6/1%), The first round of his algorithm uses our

cxpanders arising from f{inite geometries of dimension 3.
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Our new results, together with the recursive construction of
Haggvist and Hell [19, theorem 3], cnable us to improve the best

known explicit algorithm for sorting in k rounds for all (fixed) k> 4.
4. Superconcentrators of limitcd depth.

Recall the definition of an n-superconcentrator (= s.c.} given
in Scction 1. Thc depth of an s.c. is the number of ¢dges in the
longest directed path from an inpul to an output. The size of
an s.c. i8 the number of its edges. 1t is well known that s.c.’s of
linear size exist (see [26), {34]}, and in [14] an explicit construction
of an n-s.c. with size == 271.8n is given. This was improved in
[5] to 2 158n. However, the minimal possible size of an n-s.c. of
depth r is not linear with n, for all fixed r> 1. This was shown by
Dolev, Dwork, Pippenger and Wigderson [13] and, independently,
by Ajtai. Meshulam [24] constructed explicitly an n-s.c. of depth
2 and size O(n%%). The results of Slepian, Duguid and LeCorre
(cf [7, pp. 86-88]) supply an explicit n-s.c. of depth 3 and size
O(n®/2). {This is also obtained, of course, by [24].) Our geometric

expanders enable us to prove;
Theorem 4.1,

By an explicit construction there is an n-s.c. of depth 3 and
size O(n'/3).

The method described in [7, pp. 136-144] cnables one to use
Theorem 4.1 for explicit constructions of n-s.c.’s of depth 2r + 1
and size Q(n"+3/0+2)) for all fixed r> I; better than the previous

known results. We omit the detailed constructions.
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